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We present a new method for charge mixing in self-consistent density functional calculations
which uses the Thomas-Fermi-von Weizsacker equation to solve implicitly for the charge density
response function to the potential. This approach has significant improvements over existing
methods, particularly for inhomogeneous systems with large unit cells which commonly suffer

from poor convergence due to charge sloshing.

Ab initio electronic structure calculations have become
an integral part of the study of material properties. Den-
sity Functional theory (DFT)%? is the most widely used
ab initio approach in large scale materials simulations.
Accurate predictions of mechanical properties, such as
hardness, and electronic properties, such as conductiv-
ity, have made it an indispensable tool. As a result
of ever increasing processor speeds and parallelization,
larger and larger systems can be simulated with DFT
based ab initio methods. Studying these larger sys-
tems is crucial for our understanding of complex sys-
tems/materials (surfaces, interfaces, defects, amorphous,
etc.). However, as the size of the systems has become
larger, the old problem of charge sloshing has resurfaced
as a major issue. This problem comes from the slow con-
vergence of the self-consistent potential in the potential
(or charge) mixing schemes commonly used in these cal-
culations. Here, a new more efficient potential mixing
scheme? is tested, which uses an explicit Thomas-Fermi-
von Weizsacker equation to solve for the electronic re-
sponse function of the system. The time spent for the
solution of the Thomas-Fermi-von Weizsacker equation is
minimal for large systems as it only involves a minimiza-
tion on the charge density and not the wavefunctions.

There are generally two approaches to handling the
self-consistency in a DFT calculation. The first ap-
proach is to consider the total energy F[{1;}] as a func-
tion of only the Kohn-Sham? wave functions {t;} or the
potential®. As a result, minimization methods (e.g., the
conjugate gradient method) are used to directly mini-
mize the functional E[{t;}]°. There are drawbacks to
such an approach as it requires a lot of computer memory
and many computationally efficient linear algebra tech-
niques cannot be used. The second and most heavily
used approach is to change the non-linear minimization
of E[{1;}] to an eigenvalue problem, but with an addi-
tional self-consistent requirement. We first require {t;}
to satisfy the Kohn-Sham (eigenvalue) equation
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Vin(r) is a given input potential, and Vnz(r) is the non-

local potential existing only in pseudopotential calcula-
tions. Now for {1;} in this self-consistent field (SCF)
calculation to be the minimum of E[{t;}], the potential
Vin(r) must equal the output potential Voy:(r), which
is calculated from the occupied charge density p(r) =
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Vour(r) = Y vion(r — R) + / | rp(_r’g/|d37»/ + pe(p(r)).
(2)

Here vion(7) is the local part of the ionic pseudopotential
and piz.(p(r)) is the LDA exchange-correlation potential.
Matching V;,(r) with V,,:(r) is often done iteratively
by producing a new VZ»ZL-H(T) for the m+1th iteration
from the {V/! (r),Vl,.(r)} pairs of the last m itera-
tions. The generation of V;" ! (r) from {Vi (r), V). ()}
is called potential (charge) mixing, because in general, a
mixture of V! (r) and V}},(r) is used to generate the new
Vin(r). An often used linear mixing scheme is
Vinth = (1= AVl + AV, (3)
However, it is easy to see why simple mixing schemes
might lead to instability. Suppose Vi(r) is the final self-
consistent local potential and let us denote 6V = V — V..
The resulting output Coulomb potential, which is the
dominant term and the cause of the charge sloshing, is
given in reciprocal space q by,
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x(q,q') is the susceptibility of the system defined as
X6Vin = 6pout, which typically has a magnitude of or-
der one.

From equations (3,4) we have §V/"t! = [(1 — A) +
AJ6V?. Notice that for a big system (or any system
with one long dimension L), the smallest non-zero q in
(4) [the zero q does not contribute] is (27/L). As a result,
the magnitude of the maximum eigenvalue of J, ey, in
(4) is large. If A is a constant larger than [|2/ey]|, then
the magnitude of the maximum eigenvalue of [(I-A)+AJ]



is larger than one, and the iterative process is divergent.
This is the origin of the charge sloshing problem. A small
error in 6V;, will be amplified in 6V,,;. As a result,
very small values for A (e.g., 0.01) need to be used for
some calculations, which leads to very slow convergence.
This problem associated with simple mixing schemes is
discussed extensively in Annett’s work.”

A better way to solve this problem is to use a matrix
A in place of a scalar. Any A that leads to the mag-
nitude of the maximum eigenvalue of [(I-A)+AJ] to be
smaller than one will have a convergent iteration. The
best A is the one which leads to [(I-A)+AJ]=0, thus
A = (I —J)~'. This approach was used in Ref.® in
the early days of ab initio calculations. Notice that,
I — J(q,q") is just the dielectric matrix e(q,q’). Un-
fortunately, in modern large scale calculations, the full
dielectric matrix of the system is difficult to calculate,
or estimate. Thus, often an approximate ¢ i1s used. One
popular approximation is Kerker mixing®, which uses the
Thomas-Fermi dielectric function for the homogeneous
electron gas, and leads to a diagonal A(q,q’) proportional
to (]2/((]2 + q2). For homogeneous systems this damps
the charge sloshing and significantly speeds up the con-
vergence.

In the above discussion, only V;7' and V], of the
m th iteration are used to construct Vm+ In principle,
{VL.(r), V},.(r)} for all the previous m iterations can be
used In the work of Dederichs and Zeller'®, following a
detailed analysis, the constant A for each self—consistent
iteration 1s readjusted according to the Vj,, Vit of the
previous cycles. The Broyden'' method updates A, the
inverse of the Jacobian matrix (charge dielectric matrix)
of the non-linear function F[V;,] = (Vin- Vout[Vin]), with
the current (Vj,,Vou:) pair. However, it suffers from poor
convergence most noticeably when Eq.(1) is not solved to
high accuracy for every SCF cycle. In the initial SCF cy-
cles, it is not efficient to have a high accuracy for the
eigenvectors since we are far from the true potential.

A more recent approach6 is to take a linear combi-
nation V% = ZC’; ., and ask for a minimum of
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tion ) Cy = 1. This leads to a Pulay scheme!?. However,

Vi 1||, with the condi-
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for the Pulay scheme, the “in” and “out” potential are
not mixed. Thus after the {C;} are obtained, V2% and
e = EC’; ut Will be mixed according to (3), e.g.,

using the Kerker mixing leading to a Pulay-Kerker mix-
ing scheme. G. Kresse and J. Furthmiiller'® showed the
equivalence of the Pulay scheme to the modified Broy-
den method of D.D. Johnson.'* This Pulay-Kerker (PK)
method works well for homogeneous systems partly be-
cause the dielectric function of such systems can be ap-
proximated by the Thomas-Fermi dielectric function of
a homogeneous electron gas (which is the basis of the
Kerker mixing). However, for inhomogeneous system the
homogeneous electron gas is no longer a good approxima-

tion for the dielectric function . For example, in a surface
calculation, the PK method may not converge, as will be
shown later.

In our new approach® we use the Thomas-Fermi-von
Weizsacker (TFW) equation®® to solve the dielectric re-
sponse for the given system directly, instead of using the
homogeneous electron gas model. For small ¢, this step
replaces the Kerker mixing of V3,5 with V;*¥. We will
refer to this new method as the Pulay-Thomas-Fermi
(PTF) mixing scheme. The Thomas-Fermi model has
been widely used to describe the dielectric response func-
tion, and results compare well with other methods such
as the random phase approximation.'® The TFW formula
has also been used to study the dielectric function.'” The
advantage of the TFW formula is that the charge den-
sity 1s smooth and realistic near the atomic nucleus and
in the classically forbidden regions. Since an explicit so-
lution of the TFW equation for a given inhomogeneous
system 1s expected to describe the dielectric function well,
especially for small q components (which is the cause of
the charge sloshing), the use of it for potential mixing
should speed up the convergence. For large systems, the
time spent on solving the TFW equation for each self-
consistent cycle is a relatively small fraction of the total
time. Although more advanced kinetic energy function-
als do exist,'® we found that the use of the TFW form is
sufficient for our purpose.

The full dielectric function e(r,r') is not solved ex-
plicitly which would be too expensive. We solve for it
implicitly by calculating a new V;, from the V,,; pair
resulting from the Pulay mixing. The question we ask is
that, given a V;,, and V¢ (with the corresponding charge
density poyu:) pair, according to the TFW formula, what
is the new V2! that satisfies self-consistency. First, to
reproduce the relationship between V;, and p,y¢, we have

to modify the TFW formula. We will denote p(ln/j(r) as
©out(r), then the wave function type equation for the

modified TFW formula is:
1
(=5 V7 + @il (1) 4 Vin(r) + Var(")pour () + AW (r)
= erpout(r) (5)

where a = (37%)%/3, and the ozpmé term is the TF kinetic
energy. Vpi(r) is a local potential representing the nonlo-
cal part of the potential in a Kohn-Sham pseudopotential
wave function calculation. This is done by a weighted (by
the atomic wavefunctions and their occupations) average
of the s,p,d,...angular momentum dependent nonlocal
atomic pseudopotentials. £p is the Fermi energy in the
Kohn-Sham calculation. AW(r) is a term introduced to
modify the TFW formula, so that p,,: is the solution
with Vi, of (5). There are other ways to introduce this
term such as replacing the single term by a potential
multiplying @ou:(7); but after some tests, we found that
(5) is more stable. After AW(r) is calculated, the total
TFW energy functional, from which (5) is derived, is:

Errwlp f{ P2V () + - aps/?’( )



+p(r)[Y vion(r = R) + Vaur(r)] (6)
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where Epxc[p(r)] is the conventional LDA Hartree and
exchange-correlation energy functional for a given charge
density p(r). The minimum energy of Erpw[p] is then
solved using a conjugate gradient algorithm. The final
solution gives p2c¥%(r) and the corresponding potential

Viert equal to Vi¢®! within the TFW formalism, and
thus satisfying self-consistency. This is the TFW mixed
potential which will be used for the next iteration of the
Kohn-Sham equations Eq(1l). However, since the non-
local potential Vj;(r) is treated in a very approximate
way along with inherent limitationsin the TFW formula,
the large q components in V;¢**(q) may be inaccurate.
Consequently, we use the conventional Kerker mixing for
large q components in V2%*(q).

We will now present some data for simulations us-
ing the TFW formula for planewave pseudopotential
calculations using the LDA. While we have presented
most of the formalism for our approach in the context
of a planewave pseudopotential calculation we believe
our method may also be advantageous for other DFT
based approaches such as the full-potential linearized-
augmented planewave (FLAPW) method.

FIG. 1: (a) AW correction to the TFW equation in the (1-
10) plane for bulk GaAs. (b) Vmp% in the (1-10) plane for
bulk GaAs. AW and Vmp% are in the same arbitrary units.

In order to examine the role of the AW (r) correction

to (5), Fig.la shows the correction for bulk GaAs in the
(110) plane. For comparison, Fig. 1b shows the plot of

Vmp%. We have used the final converged charge density
and potential. Fig.1 shows AW(r) to be much smaller

than V;-np% which illustrates the general accuracy of the
TFW equation. However, AW(r) is appreciable near
the atoms, where V}np% is the largest, showing why it
is necessary to introduce this term. The larger value of
AW (r) near the nuclei can be attributed to the approxi-
mate treatment of the non-local pseudopotentials and to
the kinetic energy which is highest near the nuclei.

In order to study the effects of inhomogeneity and sys-
tem size on the performance of the different mixing meth-
ods, we chose to study one small surface system and
three large systems of increasing inhomogeneity (small
displacements from the ideal positions of the bulk, an
interface and a surface). We simulated the semiconduc-
tor GaAs (with InAs for an interface) as it represents a
relatively simple system that illustrates the advantages
of our new method and also has technological impor-
tance. We only tested systems with no partial occu-
pancies. All of the systems are extended in the (110)
direction, each layer having 2 atoms. For the surface
and interface calculations, we used the ideal bulk atomic
positions. Since there are no surface states in the band
gap'? for the surface, similar findings would have resulted
for the fully relaxed positions. Figs. 2(a)-(d) shows a
comparison of convergence for the four systems with the
new PTF mixing scheme, the Pulay-Kerker (PK) and
Broyden (Br) schemes using an unconstrained conjugate
gradient (CQG) algorithm for the electronic minimization
(diagonalization)?®. We used 10 CG steps (updates) for
each SCF cycle (which we found optimal for the systems
studied), 25 Rydberg cutoff, and a 1x4x4 Monkhorst-
Pack mesh for all calculations. The Y-axis is the differ-
ence in energy at each SCF cycle from the final converged
total energy and the X-axis is the time per processor. All
the simulations were carried out on a Cray T3E900. We
chose time as our unit of measure since it is the fairest
way to compare different methods where the amount of
calculation and time for each SCF cycle is different. The
convergence per SCF cycle can also be obtained from the
graphs since each point on the graphs signifies one SCF
step.

Fig. 2(a) shows the convergence for the small surface
system containing 6 layers of GaAs in the (110) direction
with 6 layers of vacuum (12 atoms total with 4 k-points in
the irreducible Brillouin zone). The system is sufficiently
small that Fig. 2(a) shows good convergence for all meth-
ods even though the system is highly inhomogeneous. At
this system size, £(q, ¢’) is a well-conditioned matrix and
thus poses no problem for any of the different methods.
Fig. 2(b) shows the convergence for a system of 40 layers
of GaAs in the (110) direction with the atoms displaced
randomly from their ideal positions, at most 0.028 Bohr
(80 atoms total with 8 k-points). Fig. 2(b) shows lit-
tle difference between the PTF and PK methods. With
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FIG. 2: (E - Eginal) vs. time for (a) 6 layers GaAs — 6 lay-
ers vacuum, (b) 40 layers GaAs displaced randomly by small
amounts, (c¢) 20 layers GaAs — 20 layers InAs, (d) 20 lay-
ers GaAs — 20 layers vacuum. Br, PK and PTF refers to
the Broyden, Pulay-Kerker and Pulay-Thomas-Fermi charge
mixing schemes. FEach point represents one SCF step. All
simulations were performed on a Cray T3E900 using 16 pro-
cessors for (a) and 64 processors for (b),(c) and (d).

these small displacements from the ideal positions the
Thomas-Fermi dielectric function for the homogeneous
electron gas, which is used in the Kerker mixing, is still a
close approximation to the true dielectric function. The
Broyden method shows very poor convergence for this
system. Fig. 2(c) shows the same data for an interface
system of 20 layers of GaAs and 20 layers of InAs, both
in the (110) direction (80 atoms total with 4 k-points).
This system can be considered to be more inhomogeneous
than 2(b) and we now start to see the advantages of the
PTF scheme over the PK scheme. The PTF scheme con-
verges about 15% faster. The dielectric function approx-
imation used in the Kerker scheme is becoming less valid.
The Broyden method again shows the worst performance.
The time per SCF cycle in Fig. 2(b) compared to Fig 2(c)
is roughly twice due to the decreased symmetry resulting
in more k-points in the irreducible Brillouin zone. Fig.
2(d) shows the same information for a system of 20 layers
of GaAs and 20 layers of vacuum (40 atoms total with
4 k-points) For this large, extremely inhomogeneous sys-
tem we see significant differences between the PK and the
PTF schemes with the PK scheme converging very slowly.
The dielectric function approximation used in the Kerker
scheme is highly inaccurate for large surface calculations.
Comparing to the smaller surface calculation (Fig. 2(a))
and the other large, but less homogeneous systems (Figs.

2(b),(c)), Fig. 2(d) clearly shows the problems of conver-
gence for the PK and Broyden schemes in dealing with
large and inhomogeneous systems. The instability of the
Broyden method can in part be attributed to over em-
phasis of new grdient information. The PTF method still
converges rapidly for these types of systems.

In conclusion, we have presented the new Pulay-
Thomas-Fermi method for potential (or charge) mixing
for the self-consistent method of solving the Kohn-Sham
equations. This method addresses the slow convergence
and charge sloshing that occurs for large and inhomoge-
neous systems. The dielectric function &(q, ¢') at small
q is calculated implicitly as V2*' is obtained by solving
the self-consistent Thomas-Fermi-von Weizsacker equa-
tion with the charge density as the variable. A large
surface calculation of GaAs shows the new method to be
clearly superior to current methods. The benefit of the
new method increases as inhomogeneity and system size
increases.
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